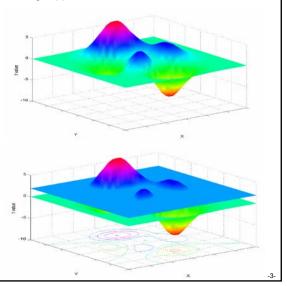


Basics: Null hypothesis significance testing (NHST)

- Main function of statistics is to get more information into the data
- Null and alternative hypotheses
 - $\ensuremath{\,arphi\,}$ H₀: nothing happened vs. H₁: something happened
- P Dichotomous decision
 - $\ensuremath{\scriptscriptstyle{arphi}}$ Rejecting H_0 at a significant level α (e.g., 0.05)
 - ∠ Subtle difference

 <u>Traditional</u>: Hypothesis holds
 until counterexample occurs;
 <u>Statistical</u>: discovery holds
 when a null hypothesis is
 rejected with some statistical
 - ∠ Topological landscape vs. binary world

confidence



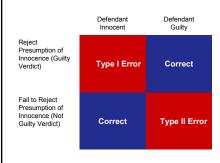
Basics: Null hypothesis significance testing (NHST)

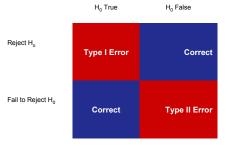
- P Dichotomous decision

 - ∠ 2 types of errors and power
 - > Type I error = $\alpha = P(\text{ reject } H_0 \mid H_0)$
 - > Type II error = β = P(accept H₀ | H₁)
 - \triangleright Power = $P(\text{accept H}_1 \mid \text{H}_1) = 1 \beta$

Justice System: Trial

Statistics: Hypothesis Test

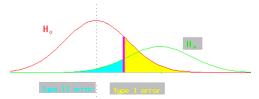




-4-

Basics: Null hypothesis significance testing (NHST)

∠Compromise and strategy



- >Lower type II error under fixed type I error
- ▶ Control false + while gaining as much power as possible
- >Check efficiency (power) of design with RSFgen before scanning

∠Typical misinterpretations*)

- ▶ Reject H_0 → Prove or confirm a theory (alternative hypothesis)! (wrong!)
- $>P(\text{ reject }H_0\mid H_0)=P(H_0)$

(wrong!)

 $P(\text{reject } H_0 \mid H_0) = \text{Probability if the experiment can be reproduced}$

(wrong!)

*) Cohen, J., "The Earth Is Round (p < .05)" (1994), American Psychologist, 49, 12 997-1003

Basics: Null hypothesis significance testing (NHST)

- Controversy: Are humans cognitively good intuitive statisticians?
- Quiz: HIV prevalence = 10⁻³, false + of HIV test = 5%, power of HIV test ~ 100%.

$$P(HIV + | test +) = \frac{P(test + | HIV +)P(HIV +)}{P(test + | HIV +)P(HIV +) + P(test + | HIV -)P(HIV -)} = \frac{1.0 \times 10^{-3}}{1.0 \times 10^{-3} + 0.05 \times (1 - 10^{-3})} \approx 0.02$$

- Keep in mind
 - ∠ Better plan than sorry: Spend more time on experiment design (power analysis)
 - ∠ More appropriate for detection than sanctification of a theory
 - > Modern phrenology?
 - ∠ Try to avoid unnecessary overstatement when making conclusions
 - ∠ Present graphics and report % signal change, standard deviation, confidence interval, ...
 - ∠ Replications are the best strategy on induction/generalization
 - > Group analysis

Quiz

A researcher tested the null hypothesis that two population means are equal (H_0 : $\mu_1 = \mu_2$). A *t*-test produced p=0.01. Assuming that all assumptions of the test have been satisfied, which of the following statements are true and which are false? Why?

- 1. There is a 1% chance of getting a result even more extreme than the observed one when H_0 is true.
- 2. There is a 1% likelihood that the result happened by chance.
- 3. There is a 1% chance that the null hypothesis is true.
- 4. There is a 1% chance that the decision to reject H_0 is wrong.
- 5. There is a 99% chance that the alternative hypothesis is true, given the observed data.
- 6. A small p value indicates a large effect.
- 7. Rejection of H_0 confirms the alternative hypothesis.
- 8. Failure to reject H_0 means that the two population means are probably equal.
- 9. Rejecting H_0 confirms the quality of the research design.
- 10. If H₀ is not rejected, the study is a failure.
- 11. If H_0 is rejected in Study 1 but not rejected in Study 2, there must be a moderator variable that accounts for the difference between the two studies.
- 12. There is a 99% chance that a replication study will produce significant results.
- 13. Assuming H_0 is true and the study is repeated many times, 1% of these results will be even more inconsistent with H_0 than the observed result.

Adapted from Kline, R. B. (2004). Beyond significance testing. Washington, DC: American Psychological Association (pp. 63-69). Dale Berger, CGU 9/04

Hint: Only 2 statements are true

7

• Basics: Student's t

- Background
 - ∠ Gossett, 1908, Guinness brewing company, Dublin
 - ∠ Named arbitrarily by R. A. Fisher
 - ∠ Bell-shaped, but more spread out

 - ∠ One tail or two?
 - \angle Special case of F: $t^2(n) = F(1, n)$
- ho Usages: one-sample, two-sample, and paired t

∠ One-sample

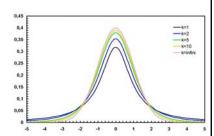
- > Effect of a condition at group level
- \rightarrow Group Mean relative to Standard Error of group Mean (SEM)

$$T = \frac{\overline{X}_n - \mu}{S_n / \sqrt{n}} \qquad S_n^2 = \frac{1}{n-1} \sum_{i=1}^n \left(X_i - \overline{X}_n \right)^2$$

- ∠ Two-sample
 - > Comparison between 2 groups
 - > (Difference of group means)/(Pooled SEM)

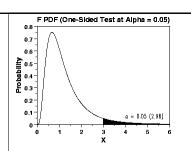
∠ Paired

- > Comparison between 2 conditions at group level
- > (Difference of conditions)/(SEM of individual differences)
- $\ensuremath{\mathbf{\varkappa}}$ Contrast and general linear test in regression and ANOVA
 - > 3dDeconvolve, 3dRegAna, 3dfim/+, 3dttest, 3dANOVA/2/3
- Assumptions
 - ∠ Gaussian and Sphericity: heteoscedasticity in two-sample t



• Basics: F

- Background
 - ∠ Named after Sir R. A. Fisher
 - ∠ Ratio of two Chi-square distributions
 - ∨ Two parameters, $F(n_1, n_2)$
 - ∠ One tail or two?
 - $\lor t$ is a special case of $F: t^2(n) = F(1, n)$
- Usages
 - ∠ Two or more samples have the same variance?
 - > ANOVA: Main effects and interactions
 - ∠ What proportion of variation (effect) in the data is attributable to some cause?
 - > Regression: Partial F and glt in 3dRegAna, 3dDeconvolve
- Assumptions
 - ∠ Gaussian
 - ∠ Sphericity
 - > More than two conditions
 - > Basis function modeling



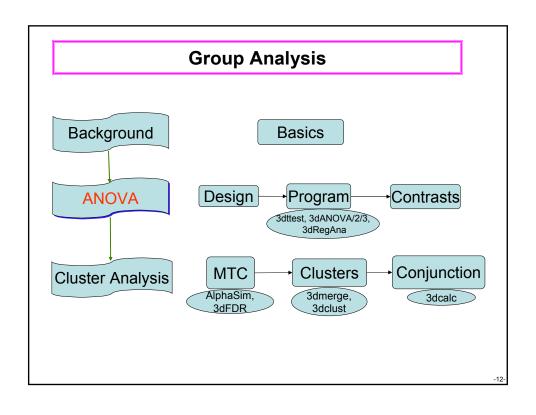
-9-

Basics: ANOVA

- Factor and level
 - ∠ Dependant and independent variable
 - ∠ Factors: categorizing variables, e.g., subject category and stimulus class
 - > Subject categories: sex, genotypes, normal vs. patient
 - > Stimulus categories: 4 (2x2) stimuli, object (human vs. tool), res (motion vs. points)
 - ∠ Levels: nominal (qualitative) values of a factor
 - > Object: human and tool; Resolution: high and low
- Fixed/random factor
 - ∠ Fixed: specific levels of a factor are of interest
 - ∠ Random (usually subject in fMRI)
 - > Each level (a specific subject) of the factor is not of interest
 - > But factor variance should be accounted for (cross-subject variation)
 - > Random-effect model
- P Different terminology for Factorial (crossed)/nested
 - ∠ Count subject as a random factor (statisticians); Random-effect model
 - ∠ Within-subject (repeated measures) / between-subjects (psychologists)
 - ∠ Crossed and nested designs
- Group analysis
 - $\ensuremath{\boldsymbol{\varkappa}}$ Make general conclusions about some population
 - u Partition/untangle data variability into various sources (effect \rightarrow causes)

-10

Basics: ANOVA Main effects and Interactions Between Gender and Condtion More terminology > Main effect: blue = men s Signal Change general info regarding red = women all levels of a factor > Simple effect: Cond1 Cond2 Cond3 No Effect of Cond or Gender Effect of Cond and Gender specific info regarding a factor level > Interaction: mutual/reciprocal influence among 2 or more factors; parallel or not? Effect of Gender, not Cond Effect of Cond, Not Gender > Disordinal interaction: differences reverse sign > Ordinal interaction: one above another > Contrast: comparison of 2 or Effect of Cond and Gender Effect of Cond and Gender more simple effects; with Interaction Effect with Interaction Effect coefficients add up to 0 Main effects and interactions in 2-way mixed ANOVA > General linear test



• Group Analysis: Overview

- Parametric Tests
 - \vee 3dttest (one-sample, unpaired and paired t)
 - ∠ 3dANOVA (one-way between-subject)
 - ∠ 3dANOVA2 (one-way within-subject, 2-way between-subjects)
 - ∠ 3dANOVA3 (2-way between-subjects, within-subject and mixed, 3-way between-subjects)
 - ∠ 3dRegAna (regression/correlation, unbalanced ANOVA, ANCOVA)
 - ∠ GroupAna (Matlab script for up to 5-way ANOVA)
- Non-Parametric Analysis
 - ∠ No assumption of normality; Statistics based on ranking
 - ∠ Appropriate when number of subjects too few
 - ∠ Programs
 - > 3dWilcoxon (~ paired t-test)
 - > 3dMannWhitney (~ two-sample t-test)
 - > 3dKruskalWallis (~3dANOVA)
 - > 3dFriedman (~3dANOVA2)
 - > Permutation test: plugin on AFNI under Define Datamode / Plugins /
 - ∠ Can't handle complicated designs
 - ∠ Less sensitive to outliers (more robust) and less flexible than parametric tests

-13

Group Analysis: Overview

- How many subjects?

 - ∠ Efficiency increases by the square root of # subjects
 - ∠ Balance: Equal number of subjects across groups if possible
- P Input
 - ∠ % signal change (not statistics)
 - > HRF magnitude: Regression coefficients
 - ➤ Contrast
 - ∠ Common brain in tlrc space
 - > Resolution: Doesn't have to be 1x1x1 mm³
- Design
 - ∠ Number of factors
 - ∠ Number of levels for each factor
 - ∠ Within-subject / repeated-measures vs. between-subjects
 - > Fixed (factors of interest) vs. random (subject)
 - > Nesting: Balanced?
 - ∠ Which program?
- Contrasts
 - ∠ One-tail or two-tail?

-14-

Group Analysis 3dttest

- Basic usage
 - ∠ One-sample t
 - > One group: simple effect
 - \triangleright Example: 15 subjects under condition A with H_0 : $\mu_A = 0$
 - ∠ Two-sample t
 - > Two groups: Compare one group with another
 - > ~ 1-way between-subject (3dANOVA2 -type 1)
 - > Unequal sample sizes allowed
 - > Assumption of equal variance
 - \triangleright Example: 15 subjects under A and 13 other subjects under B H_0 : $\mu_A = \mu_B$
 - ∠ Paired t
 - > Two conditions of one group: Compare one condition with another
 - > ~ one-way within-subject (3dANOVA2 -type 3)
 - > ~ one-sample t on individual contrasts
 - \triangleright Example: Difference between conditions A and B for 15 subjects with H_0 : $\mu_A = \mu_B$
- Output: 2 values (% and t)
- Versatile program: Most tests can be done with 3dttest: piecemeal vs. bundled

-15

• Group Analysis: 3dANOVA

- - ∠ One-way between-subject
 - νH_0 : no difference across all levels (groups)
 - ∠ Examples of groups: gender, age, genotype, disease, etc.
 - ∠ Unequal sample sizes allowed
- Assumptions
 - ∠ Normally distributed with equal variances across groups
- Results: 2 values (% and t)
- 3dANOVA VS. 3dttest
 - ∠ Equivalent with 2 levels (groups)
 - ∠ More than 2 levels (groups): Can run multiple two-sample *t*-test

-16-

Group Analysis: 3dANOVA2

- Designs
 - ∠ One-way within-subject (type 3)
 - > Major usage
 - > Compare conditions in one group
 - > Extension and equivalence of paired t
 - ∠ Two-way between-subjects (type 1)
 - > 1 condition, 2 classifications of subjects
 - > Extension and equivalence two-sample t
 - > Unbalanced designs disallowed: Equal number of subjects across groups
- Output
 - ∠ Main effect (-fa): F
 - ∠ Interaction for two-way between-subjects (-fab): F
 - ∠ Contrast testing
 - > Simple effect (-amean)
 - >1st level (-acontr, -adiff): among factor levels
 - > 2nd level (interaction) for two-way between-subjects
 - > 2 values per contrast: % and t

17

• Group Analysis: 3dANOVA3

- P Designs
 - ∠ Three-way between-subjects (type 1)
 - > 3 categorizations of groups
 - ∠ Two-way within-subject (type 4): Crossed design AXBXC
 - ➤ Generalization of paired *t*-test
 - > One group of subjects
 - > Two categorizations of conditions: A and B
 - ∠ Two-way mixed (type 5): Nested design BXC(A)
 - > Two or more groups of subjects (Factor A): subject classification, e.g., gender
 - > One category of condition (Factor B)
 - > Nesting: balanced
- Output
 - ∠ Main effect (-fa and -fb) and interaction (-fab): F
 - ∠ Contrast testing
 - >1st level: -amean, -adiff, -acontr, -bmean, -bdiff, -bcontr
 - >2nd level: -abmean, -aBdiff, -aBcontr, -Abdiff, -Abcontr
 - > 2 values per contrast : % and t

-18-

Group Analysis: GroupAna

- Multi-way ANOVA
 - ∠ Matlab script package for up to 5-way ANOVA
 - ∠ Requires Matlab plus Statistics Toolbox
 - ∠ GLM approach (slow)
 - ∠ Powerful: Test for interactions
 - ∠ Downside
 - > Difficult to test and interpret simple effects/contrasts
 - > Complicated design, and compromised power
 - ∠ Heavy duty computation: minutes to hours
 - > Input with lower resolution recommended
 - > Resample with adwarp -dxyz # and 3dresample
 - ∠ Can handle both volume and surface data
 - ∠ Can handle following <u>unbalanced</u> designs (two-sample *t* type):
 - > 3-way ANOVA type 3: BXC(A)
 - > 4-way ANOVA type 3: BXCXD(A)
 - > 4-way ANOVA type 4: CXD(AXB)
- See http://afni.nimh.nih.gov/sscc/gangc for more info

-19

Group Analysis: Example

- Design
 - ∠ 4 conditions (TM, TP, HM, HP) and 8 subjects
 - ∠ 2-way within-subject: 2x2x8
 - > A (Object), 2 levels: Tool vs Human
 - > B (Animation), 2 levels: Motion vs Point
 - > C (subject), 8 levels
 - > AxBxC: Program?
 - 3dANOVA3 -type 4
- Main effects (A and B): 2 F values
- Interaction AXB: 1 F
- Contrasts
 - ∠ 1st order: TvsH, MvsP
 - u 2nd order: TMvsTP, HMvsHP, TMvsHM, TPvsHP
 - ∠ 6x2 = 12 values
- Logistic
 - ∠ Input: 2x2x8 = 32 files (4 from each subject)
 - ∠ Output: 18 subbricks

-20-

```
    Group Analysis: Example

   Script
                                                                 Model type, number of
3dANOVA3 -type 4 -alevels 2 -blevels 2 -clevels 8 \
                                                                  levels for each factor
-dset 1 1 1 ED_TM_irf_mean+tlrc \
-dset 1 2 1 ED_TP_irf_mean+tlrc \
                                                                 Input for each cell in
                                                                   ANOVA table:
-dset 2 1 1 ED_HM_irf_mean+tlrc \
                                                                  totally 2X2X8 = 32
-dset 2 2 1 ED_HP_irf_mean+tlrc \
-adiff
          1 2 TvsH1 \ (indices for difference)
                                                                   1st order Contrasts,
-acontr 1 -1 TvsH2 \ (coefficients for contrast)
                                                                      paired t test
-bdiff
          1 2 MvsP1 \
-aBdiff 1 2 : 1 TMvsHM \ (indices for difference)
-aBcontr 1 -1 : 1 TMvsHM \ (coefficients for contrast)
                                                                   2<sup>nd</sup> order Contrasts,
-aBcontr -1 1 : 2 HPvsTP \
                                                                      paired t test
-Abdiff 1:1 2 TMvsTP \
-Abcontr 2 : 1 -1 HMvsHP \
-fa ObjEffect \
                                                                      Main effects &
                                                                     interaction F test:
-fb AnimEffect \
                                                                   Equivalent to contrasts
-fab ObjXAnim \
                                                                   Output: bundled
-bucket Group
```

```
    Group Analysis: Example
    Alternative approaches
    GroupAna
    Paired t: 6 tests
    Program: 3dttest -paired
    For TM vs HM: 16 (2x8) input files (β coefficients: %) from each subject
    3dttest -paired -prefix TMvsHM
    -set1 ED_TM_irf_mean+tlrc ... ZS_TM_irf_mean+tlrc \
        -set2 ED_HM_irf_mean+tlrc ... ZS_HM_irf_mean+tlrc
    Cone-sample t: 6 tests
    Program: 3dttest
    For TM vs HM: 8 input files (contrasts: %) from each subject
    3dttest -prefix TMvsHM
    -basel 0
    -set2 ED_TMvsHM_irf_mean+tlrc ... ZS_TMvsHM_irf_mean+tlrc
```

Group Analysis: ANCOVA

- Why ANCOVA?
 - ∠ Subjects might not be an ideally randomized representation of a population
 - ∠ If no controlled, cross-subject variability will lead to loss of power and accuracy
 - ∠ Direct control: balanced selection of subjects
 - ∠ Indirect (statistical) control: untangling covariate effect
 - ∠ Covariate: uncontrollable and confounding variable, usually continuous
 - > Age
 - > Behavioral data, e.g., response time
 - > Cortex thickness
 - > Gender
- ANCOVA = Regression + ANOVA
 - ∠ Assumption: linear relation between % signal change and the covariate
 - ∠ GLM approach
 - ∠ Avoid multi-way ANCOVA
 - > Analyze partial data with one-way ANCOVA
 - > Similar to running multiple one-sample or two-sample t test
 - ∠ Centralize covariate so that it would not confound with other effects

-23

Group Analysis: ANCOVA Example

- F Example: Running ANCOVA
 - ∠ Two groups: 15 normal vs. 13 patients
 - ∠ Analysis: comparing the two groups
 - ∠ Running what test?
 - \gt Two-sample t with 3dttest
 - > Controlling age effect?
 - ∠ GLM model

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i} + \varepsilon_i$$
, $i = 1, 2, ..., n (n = 28)$

- ➤ Demean covariate (age) X₁
- > Code the factor (group) with a dummy variable
 - 0, when the subject is a patient;

$$X_{2i} = \{$$

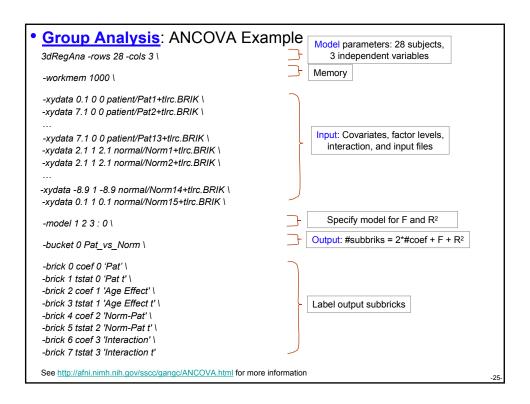
1, when the subject is normal.

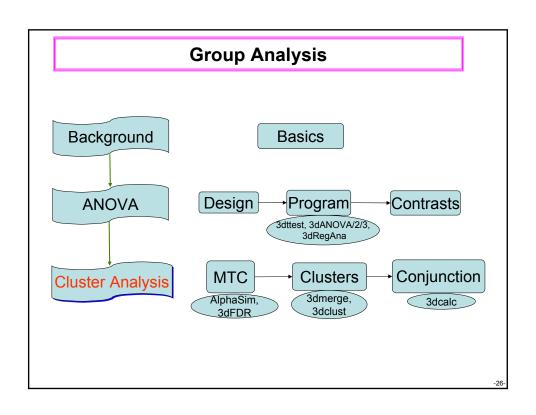
 \succ With covariate X_1 centralized:

 β_0 = effect of patient; β_1 = age effect (correlation coef); β_2 = effect of normal

 $\succ X_{3i} = X_{1i}X_{2i}$ models interaction (optional) between covariate and factor (group) β_3 = interaction

-24-





Cluster Analysis: Multiple testing correction

- 2 types of errors in statistical tests
 - \checkmark What is H_0 in FMRI studies?
 - ν Type I = P (reject H_0 |when H_0 is true) = false positive = p value
 - Type II = P (accept H_0 |when H_1 is true) = false negative = β
 - ∠ Usual strategy: controlling type I error
 - (power = 1- β = probability of detecting true activation)
 - ∠ Significance level = α : $p < \alpha$
- Family-Wise Error (FWE)
 - ν Birth rate H_0 : sex ratio at birth = 1:1
 - > What is the chance there are 5 boys (or girls) in a family?
 - > Among100 families with 5 kids, expected #families with 5 boys =?
 - ν In fMRI H_0 : no activation at a voxel
 - > What is the chance a voxel is mistakenly labeled as activated (false +)?
 - > Multiple testing problem: With n voxels, what is the chance to mistakenly label at least one voxel? Family-Wise Error: $\alpha_{\text{FW}} = 1 (1 p)^n \rightarrow 1$ as n increases
 - > Bonferroni correction: $\alpha_{FW} = 1 (1 p)^n \sim np$, if p << 1/nUse $p = \alpha/n$ as individual voxel significance level to achieve $\alpha_{FW} = \alpha$

-27-

Cluster Analysis: Multiple testing correction

- Multiple testing problem in fMRI: voxel-wise statistical analysis
 - ∠ Increase of chance at least one detection is wrong in cluster analysis
 - ∠ 3 occurrences of multiple testing: individual, group, and conjunction
 - ∠ Group analysis is the most concerned
- Two approaches
 - ∨ Control FWE: $α_{FW} = P (≥ one false positive voxel in the whole brain)$
 - \triangleright Making α_{FW} small but without losing too much power
 - > Bonferroni correction doesn't work: $p=10^{-8}\sim10^{-6}$
 - *Too stringent and overly conservative: Lose statistical power
 - > Something to rescue? Correlation and structure!
 - *Voxels in the brain are not independent
 - *Structures in the brain
 - ∠ Control false discovery rate (FDR)
 - > FDR = expected proportion of false + voxels among all detected voxels
 - \angle Concrete example: individual voxel p = 0.001 for a brain of 25,000 EPI voxels
 - > Uncorrected → 25 false + voxels in the brain
 - FWE: corrected $p = 0.05 \rightarrow 1$ false + among 20 brains for a fixed voxel location
 - > FDR: corrected $p = 0.05 \rightarrow 5\%$ voxels in those positively labeled ones are false +

-28-

Cluster Analysis: AlphaSim

- FWE: Monte Carlo simulations
 - ∠ Named for Monte Carlo, Monaco, where the primary attractions are casinos
 - ∠ Program: AlphaSim
 - > Randomly generate some number (e.g., 1000) of brains with random noise
 - > Count the proportion of voxels are false + in all brains
 - > Parameters:
 - * ROI
 - * Spatial correlation
 - * Connectivity
 - * Individual voxel significant level (uncorrected *p*)
 - Output
 - * Simulated (estimated) overall significance level (corrected *p*-value)
 - * Corresponding minimum cluster size
 - > Decision: Counterbalance among
 - * Uncorrected p
 - * Minimum cluster size
 - * Corrected p

-29

Cluster Analysis: AlphaSim

Example

```
AlphaSim \
-mask MyMask+orig \
-fwhmx 4.5 -fwhmy 4.5 -fwhmz 6.5 \

Program
Restrict correcting region: ROI
Spatial correlation

-rmm 6.3 \
-pthr 0.0001 \
-iter 1000

Number of simulations
```

- P Output: 5 columns
 - $\ensuremath{\boldsymbol{\varkappa}}$ Focus on the 1st and last columns, and ignore others
 - ∠ 1st column: minimum cluster size in voxels
 - u Last column: alpha (α), overall significance level (corrected p value)

CI Size	Frequency	Cum Prop	p/Voxel	Max Freq	Alpha
2	1226	0.999152	0.00509459	831	0.859
3	25	0.998382	0.00015946	25	0.137
4	3	1.0	0.00002432	3	0.03

-30

• Cluster Analysis: 3dFDR

P Definition:

FDR = proportion of false + voxels among all detected voxels

$$FDR = \frac{N_{ia}}{D_a} = \frac{N_{ia}}{N_{ia} + N_{aa}}$$

- P Doesn't consider
 - ∠ spatial correlation
 - ∠ cluster size
 - ∠ connectivity
- Again, only controls the expected % false positives among declared active voxels
- Algorithm: statistic (t) $\rightarrow p$ value \rightarrow FDR (q value) $\rightarrow z$ score
- Example:

```
3dFDR -input 'Group+tlrc[6]'
One statistic

-mask_file mask+tlrc
ROI

-cdep -list
Arbitrary distribution of p

-output test
Output
```

31

Declared

Inactive

 $N_{ai}(II)$

N_{ii}

D,

Truly

Truly

Active

Inactive

Declared

 T_a

Active

 $N_{ia}(I)$

 N_{aa}

 D_a

• Cluster Analysis: FWE or FDR?

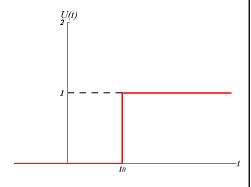
- P Correct type I error in different sense
 - ν FWE: α_{FW} = P (≥ one false positive voxel in the whole brain)
 - > Frequentist's perspective: Probability among many hypothetical activation brains
 - > Used usually for parametric testing
 - ∠ FDR = expected % false + voxels among all detected voxels
 - > Focus: controlling false + among detected voxels in one brain
 - > More frequently used in non-parametric testing
- Fail to survive correction?
 - ∠ At the mercy of reviewers
 - ∠ Analysis on surface
 - ∠ Tricks
 - ➤ One-tail?
 - > ROI cheating?
 - ∠ Many factors along the pipeline
 - > Experiment design: power?
 - > Sensitivity vs specificity
 - > Poor spatial alignment among subjects

-32

Cluster Analysis: Conjunction analysis

- Conjunction analysis
 - ∠ Common activation area
 - ∠ Exclusive activations
- P Double/dual thresholding with AFNI GUI
 - ∠ Tricky
 - ∠ Only works for two contrasts
 - ∠ Common but not exclusive areas
- P Conjunction analysis with 3dcalc
 - ∠ Flexible and versatile
 - ∠ Heaviside unit (step function)
 defines a On/Off event

$$\mathbf{U}(t-t_0) = \begin{cases} 1 & t \ge t_0 \\ 0 & t < t_0 \end{cases}$$



33-

Cluster Analysis: Conjunction analysis

- F Example with 3 contrasts: A vs D, B vs D, and C vs D
 - ∠ Map 3 contrasts to 3 numbers: A > D: 1; B > D: 2; C > D: 4 (why 4?)
 - ∠ Create a mask with 3 subbricks of *t* (all with a threshold of 4.2)

```
3dcalc -a func+tlrc'[5]' -b func+tlrc'[10]' -c func+tlrc'[15]' \
-expr 'step(a-4.2)+2*step(b-4.2)+4*step(c-4.2)' \
```

-prefix ConjAna

- ∠ 8 (=23) scenarios:
 - 0: none;
 - 1: A > D but no others;
 - 2: B > D but no others;
- 3: A > D and B > D but not C > D;
- 4: C > D but no others;
- 5: A > D and C > D but not B > D;
- 6: B > D and C > D but not A > D;
- 7: A > D, B > D and C > D

-34-

• Miscellaneous

- Fixed-effects analysis
- Sphericity and Heteroscedasticity
- Trend analysis
- Correlation analysis (aka functional connectivity)

-35-

• Need Help?

- - > 3dANOVA3 -help
- ∴Manuals
 - http://afni.nimh.nih.gov/afni/doc/manual/
- ∴Web
 - > http://afni.nimh.nih.gov/sscc/gangc
- Examples: HowTo#5
 - > http://afni.nimh.nih.gov/afni/doc/howto/
- Message board
 - http://afni.nimh.nih.gov/afni/community/board/
- ⇔Appointment

> Contact us @1-800-NIH-AFNI

-36-